skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biswas, Niloy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chaudhuri, Kamalika and (Ed.)
    Spike-and-slab priors are commonly used for Bayesian variable selection, due to their interpretability and favorable statistical properties. However, existing samplers for spike-and-slab posteriors incur prohibitive computational costs when the number of variables is large. In this article, we propose Scalable Spike-and-Slab (S^3), a scalable Gibbs sampling implementation for high-dimensional Bayesian regression with the continuous spike-and-slab prior of George & McCulloch (1993). For a dataset with n observations and p covariates, S^3 has order max{n^2 p_t, np} computational cost at iteration t where p_t never exceeds the number of covariates switching spike-and-slab states between iterations t and t-1 of the Markov chain. This improves upon the order n^2 p per-iteration cost of state-of-the-art implementations as, typically, p_t is substantially smaller than p. We apply S^3 on synthetic and real-world datasets, demonstrating orders of magnitude speed-ups over existing exact samplers and significant gains in inferential quality over approximate samplers with comparable cost. 
    more » « less
  2. Markov chain Monte Carlo (MCMC) methods generate samples that are asymptotically distributed from a target distribution of interest as the number of iterations goes to infinity. Various theoretical results provide upper bounds on the distance between the target and marginal distribution after a fixed number of iterations. These upper bounds are on a case by case basis and typically involve intractable quantities, which limits their use for practitioners. We introduce L-lag couplings to generate computable, non-asymptotic upper bound estimates for the total variation or the Wasserstein distance of general Markov chains. We apply L-lag couplings to the tasks of (i) determining MCMC burn-in, (ii) comparing different MCMC algorithms with the same target, and (iii) comparing exact and approximate MCMC. Lastly, we (iv) assess the bias of sequential Monte Carlo and self-normalized importance samplers. 
    more » « less